Neto_KDD_2019

syn22017691

Created By Meghasyam Tummalacherla meghasyam

doi: 10.1145/3292500.3330903
url: https://doi.org/10.1145/3292500.3330903
ISBN: 978-1-4503-6201-6
Year: 2019
Study: mPower Mobile Parkinson Disease Study
Title: A Permutation Approach to Assess Confounding in Machine Learning Applications for Digital Health
synID: syn4993293
Author: Neto EC Pratap A Perumal TM Tummalacherla M Bot BM Mangravite L Omberg L
Journal: KDD '19: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
Abstract: syn22017691
Featured: TRUE
Diagnosis: Parkinson's disease control
Consortium: mHealth
sensorType: accelerometer gyroscope magnetometer touchscreen microphone
studyOrProject: [mPower Mobile Parkinson Disease Study](/Explore/Studies/DetailsPage?study=mPower%20Mobile%20Parkinson%20Disease%20Study)
publicationType: study
digitalAssessmentCategory: resting tremor kinetic tremor postural tremor action tremor gait voice

Neto_KDD_2019 page is loading…